首页 | 本学科首页   官方微博 | 高级检索  
     


Intraband Cooling in All‐Inorganic and Hybrid Organic–Inorganic Perovskite Nanocrystals
Authors:Benjamin T Diroll  Richard D Schaller
Abstract:Intraband relaxation in all‐inorganic cesium lead tribromide (CsPbBr3) and hybrid organic–inorganic formamidinium lead tribromide (FAPbBr3) nanocrystals is experimentally investigated for a range of particle sizes, excitation energies, sample temperatures, and excitation fluences. Hot carriers in CsPbBr3 nanocrystals consistently exhibit slower cooling than FAPbBr3 nanocrystals in the single electron–hole pair per nanocrystal regime. In both compositions, long‐lived hot carriers (>3 ps) are only observed at excitation densities corresponding to production of multiple electron–hole pairs per nanocrystal—and concomitant Auger recombination. These presented results are distinct from previous reports in bulk hybrid perovskite materials that convey persistent hot carriers at low excitation fluences. Time‐resolved photoluminescence confirms the rapid cooling of carriers in the low‐fluence (single electron–hole pair per nanocrystal) regime. Intraband relaxation processes, as a function of excitation energy, size, and temperature are broadly consistent with other nanocrystalline semiconductor materials.
Keywords:hot carriers  intraband  nanocrystals  perovskites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号