首页 | 本学科首页   官方微博 | 高级检索  
     


Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration
Authors:Chunmao Chen,Jincheng Tang,Yong Gu,Lili Liu,Xingzhi Liu,Lianfu Deng,Cl  udia Martins,Bruno Sarmento,Wenguo Cui,Liang Chen
Affiliation:Chunmao Chen,Jincheng Tang,Yong Gu,Lili Liu,Xingzhi Liu,Lianfu Deng,Cláudia Martins,Bruno Sarmento,Wenguo Cui,Liang Chen
Abstract:Fully simulating the components and microstructures of soft tissue is a challenge for its functional regeneration. A new aligned hydrogel microfiber scaffold for spinal cord regeneration is constructed with photocrosslinked gelatin methacryloyl (GelMA) and electrospinning technology. The directional porous hydrogel fibrous scaffold consistent with nerve axons is vital to guide cell migration and axon extension. The GelMA hydrogel electrospun fibers soak up water more than six times their weight, with a lower Young's modulus, providing a favorable survival and metabolic environment for neuronal cells. GelMA fibers further demonstrate higher antinestin, anti‐Tuj‐1, antisynaptophysin, and anti‐CD31 gene expression in neural stem cells, neuronal cells, synapses, and vascular endothelial cells, respectively. In contrast, anti‐GFAP and anti‐CS56 labeled astrocytes and glial scars of GelMA fibers are shown to be present in a lesser extent compared with gelatin fibers. The soft bionic scaffold constructed with electrospun GelMA hydrogel fibers not only facilitates the migration of neural stem cells and induces their differentiation into neuronal cells, but also inhibits the glial scar formation and promotes angiogenesis. Moreover, the scaffold with a high degree of elasticity can resist deformation without the protection of a bony spinal canal. The bioinspired aligned hydrogel microfiber proves to be efficient and versatile in triggering functional regeneration of the spinal cord.
Keywords:bioinspired scaffold  electrospun  hydrogel  microfibers  spinal cord injury
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号