首页 | 本学科首页   官方微博 | 高级检索  
     


A Generic Soft Encapsulation Strategy for Stretchable Electronics
Authors:Kan Li  Xu Cheng  Feng Zhu  Linze Li  Zhaoqian Xie  Haiwen Luan  Zhouheng Wang  Ziyao Ji  Heling Wang  Fei Liu  Yeguang Xue  Changqing Jiang  Xue Feng  Luming Li  John A. Rogers  Yonggang Huang  Yihui Zhang
Abstract:Recent progress in stretchable forms of inorganic electronic systems has established a route to new classes of devices, with particularly unique capabilities in functional biointerfaces, because of their mechanical and geometrical compatibility with human tissues and organs. A reliable approach to physically and chemically protect the electronic components and interconnects is indispensable for practical applications. Although recent reports describe various options in soft, solid encapsulation, the development of approaches that do not significantly reduce the stretchability remains an area of continued focus. Herein, a generic, soft encapsulation strategy is reported, which is applicable to a wide range of stretchable interconnect designs, including those based on two‐dimensional (2D) serpentine configurations, 2D fractal‐inspired patterns, and 3D helical configurations. This strategy forms the encapsulation while the system is in a prestrained state, in contrast to the traditional approach that involves the strain‐free configuration. A systematic comparison reveals that substantial enhancements (e.g., ≈6.0 times for 2D serpentine, ≈4.0 times for 2D fractal, and ≈2.6 times for 3D helical) in the stretchability can be achieved through use of the proposed strategy. Demonstrated applications in highly stretchable light‐emitting diodes systems that can be mounted onto complex curvilinear surfaces illustrate the general capabilities in functional device systems.
Keywords:buckling  encapsulation method  soft elastomers  stretchable electronics  two‐stage encapsulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号