摘 要: | 针对深度学习模型复杂度高导致的模型训练时间长、收敛速度慢等问题,本文提出了一种融合多尺度倒残差块(Multiscale-Inverted Residual Block, MS-IRB)与通道注意力机制(Channel Attention Mechanism, CAM)的入侵检测模型,该模型在确保检测性能的同时降低了复杂度.首先,将数据集中的一维网络流量数据进行数值化、归一化处理,进而转化为三通道格式;其次,利用三组倒残差块对数据进行多尺度特征提取,所使用的卷积核尺寸分别为1×1、2×2、3×3,采用通道注意力机制为各个卷积通道分配不同权重,提高了本文模型对包含更多有效信息通道的关注度,选用BN方法来降低过拟合程度并加快模型的收敛速度;最后,将全连接处理所得特征矩阵通过Softmax函数映射获得分类结果.为验证本文模型,在UNSW-NB15数据集上进行实验评估.实验结果表明:本文模型参数数量分别比CNN少34%、比LSTM少60%,且计算量比CNN小45%;同时,分类准确率相比CNN提高了0.7%.
|