首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced high-temperature strength in textured (Ti1/3Zr1/3Hf1/3)B2 medium-entropy ceramics via strong magnetic field
Authors:Rong-Zhen Li  Xin-Gang Wang  Jian-Hui Yuan  Xiao-Fei Wang  Wei Gao  Fu-Lin Qin  Guo-Jun Zhang  Dan-Yu Jiang
Affiliation:1. School of Materials Science and Engineering, Shanghai Engineering and Technology, Shanghai, Shanghai, China

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, China;2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, China;3. School of Materials Science and Engineering, Shanghai Engineering and Technology, Shanghai, Shanghai, China;4. Institute of Functional Materials, Donghua University, Shanghai, China

Abstract:This study prepared textured (Ti1/3Zr1/3Hf1/3)B2 medium-entropy ceramics for the first time that maintain enhanced flexural strength up to 1800°C using single-phase (Ti1/3Zr1/3Hf1/3)B2 powders, slip casting under a strong magnetic field, and hot-pressed sintering methods. Effects of WC additive and strong magnetic field direction on the phase compositions, orientation degree, microstructure evolution, and high-temperature flexural strength of (Ti1/3Zr1/3Hf1/3)B2 were investigated. (Ti1/3Zr1/3Hf1/3)B2 grain grows along the a,b-axes, resulting in a platelet-like morphology. Pressure parallel and perpendicular to the magnetic field direction can promote the orientation degree and hinder the texture structure formation, respectively. Reaction products of W(B,C) and (Ti,Zr,Hf)C between (Ti1/3Zr1/3Hf1/3)B2 and WC additive can efficiently refine the (Ti1/3Zr1/3Hf1/3)B2 grain size and promote grain orientation. (Ti1/3Zr1/3Hf1/3)B2 ceramics doped with 5 vol.% WC yielded a Lotgering orientation factor of 0.74 through slip casting under a strong magnetic field (12 T) and hot-pressed sintering at 1900°C. Furthermore, cleaning the boundary by W(B,C) and introducing texture can enhance the grain-boundary strength and improve its high-temperature flexural strength. The four-point flexural strength of textured (Ti1/3Zr1/3Hf1/3)B2-5 vol.% WC ceramics was 770 ± 59 MPa at 1600°C and 638 ± 117 MPa at 1800°C.
Keywords:borides  mechanical properties  microstructure  texture  ultrahigh-temperature ceramics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号