摘 要: | 针对经典差分进化算法(DE)的优化性能容易受到变异策略和控制参数影响的问题,提出了一种参数自适应的精英变异差分进化算法(A parameter Adaptive Elite Mutation Eifferential Evolution algorithm, AMEDE).首先,提出一种精英变异策略的方法,其目的是为了方便获取优秀个体信息;其次,引入新的控制参数,使得算法可以在更大的搜索空间进行搜索;最后,利用自适应参数学习方法,为种群中的每个个体赋予不同的控制参数值,并根据种群多样性和精英个体的信息动态更新个体的参数,使算法避免过早的收敛并提高算法的收敛精度.对本文提出的AMEDE算法与其他6种改进差分进化算法(DE,CoDE,JaDE,JDE,SaDE,GPDE)在16个基准测试函数上进行了三组对比实验.实验结果表明,AMEDE算法在高维函数和低维函数上都具有搜索精度高、收敛速度快和鲁棒性强等优点.
|