首页 | 本学科首页   官方微博 | 高级检索  
     

基于微电流刺激的多强度分级虚拟触觉反馈
引用本文:谭铭昱, 花浩镪, 熊奇炜, 朱齐, 舒琳, 徐向民, 梁家铭, 魏磊, 黄国志, 曾庆. 基于微电流刺激的多强度分级虚拟触觉反馈[J]. 计算机研究与发展, 2023, 60(9): 2015-2027. DOI: 10.7544/issn1000-1239.202330420
作者姓名:谭铭昱  花浩镪  熊奇炜  朱齐  舒琳  徐向民  梁家铭  魏磊  黄国志  曾庆
作者单位:1.华南理工大学未来技术学院 广州 511442;2.华南理工大学电子与信息学院 广州 510641;3.琶洲实验室 广州 510335;4.腾讯科技(深圳)有限公司Robotics X实验室 广东深圳 518054;5.迪肯大学 澳大利亚墨尔本 3220;6.南方医科大学珠江医院康复医学科 广州 510280;7.南方医科大学康复医学院 广州 510515
基金项目:国家重点研发计划(2022YFB4500600);;中山市科技计划(2019AG024);
摘    要:

触觉反馈可以有效提高用户的虚拟现实交互的沉浸感,但是采用振动方式的触觉反馈存在反馈模态单一的缺陷;采用机械传动式、微流驱动方式的触觉反馈存在结构复杂、难以集成等缺陷. 微电流触觉反馈具有集成度高、反馈模态丰富等优点,但是存在反馈强度识别准确率不够和长时间作用下易造成不适感等问题. 为了解决这些问题,设计了基于微电流刺激的新型多强度电触觉反馈系统,通过研究电流参数、电极阵列和接地电极等影响因素,并引入双相电流脉冲,优化电流正负电荷量比值等方式,确定了该系统的刺激模式. 35名受试者的心理物理学实验结果表明该反馈系统能够在有效减少微电流刺激带来不适的同时实现93.3%和81.7%的四级和五级强度识别准确率,优于传统方法,这可能是具有广泛应用场景的触觉反馈设备.



关 键 词:触觉反馈  微电流刺激  优化的电刺激范式  高准确率
收稿时间:2023-05-31
修稿时间:2023-07-24

Electrotactile feedback for hand interactions: A systematic review,meta-analysis,and future directions
Tan Mingyu, Hua Haoqiang, Xiong Qiwei, Zhu Qi, Shu Lin, Xu Xiangmin, Liang Jiaming, Wei Lei, Huang Guozhi, Zeng Qing. Multi-Intensity Graded Virtual Tactile Feedback Based on Microcurrent Stimulation[J]. Journal of Computer Research and Development, 2023, 60(9): 2015-2027. DOI: 10.7544/issn1000-1239.202330420
Authors:Tan Mingyu  Hua Haoqiang  Xiong Qiwei  Zhu Qi  Shu Lin  Xu Xiangmin  Liang Jiaming  Wei Lei  Huang Guozhi  Zeng Qing
Affiliation:1.School of Future Technology, South China University of Technology, Guangzhou 511442;2.School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641;3.Pazhou Lab, Guangzhou 510335;4.Robatics X Laboratory, Tencent Technology (Shenzhen) Co. Ltd., Shenzhen, Guangdong 518054;5.Deakin University, Melbourne, Australia 3220;6.Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510280;7.School of Rehabilitation Sciences, Southern Medical University, Guangzhou 510515
Abstract:Tactile feedback is an essential component of virtual reality systems, as it enhances the user’s immersion and engagement in the virtual environment. However, traditional tactile feedback methods, such as vibration mode, suffer from the limitation of a single feedback mode, while mechanical drive type and microfluidic drive mode is complex in structure and difficult to integrate. Moreover, micro-current tactile feedback offers high integration and rich feedback modalities, but it suffers from issues such as insufficient feedback strength recognition accuracy and discomfort caused by prolonged electrical stimulation. To address these challenges, we develop and design a novel multi-intensity electro-tactile feedback system based on microcurrent stimulation and determine the optimal stimulation paradigm of this system by studying key influencing factors such as stimulation signal parameters, electrode arrays, and grounded electrode, introducing biphasic current pulses, and optimizing the ratio of positive to negative current charge. We evaluate the performance of the system through psychophysical experiments on 35 subjects. The results show that the system achieves 93.3% and 81.7% accuracy in recognizing four and five levels of intensity, respectively, while effectively reducing discomfort caused by micro-current stimulation. This system outperforms traditional methods and has the potential to be a versatile tactile feedback device with wide application scenarios.
Keywords:tactile feedback  microcurrent stimulation  optimized electrical stimulation paradigm  high accuracy rate
点击此处可从《计算机研究与发展》浏览原始摘要信息
点击此处可从《计算机研究与发展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号