首页 | 本学科首页   官方微博 | 高级检索  
     


Heat-shock protein-27, -70 and peroxiredoxin-II show molecular chaperone function in sickle red cells: Evidence from transgenic sickle cell mouse model
Authors:Biondani Andrea  Turrini Franco  Carta Franco  Matté Alessandro  Filippini Alida  Siciliano Angela  Beuzard Yves  De Franceschi Lucia
Affiliation:Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
Abstract:Sickle cell disease (SCD) is an autosomal recessive genetic red cell disorder characterized by the production of a defective form of hemoglobin, hemoglobin-S, that is worldwide-distributed. The acute clinical manifestations of SCD are related to hemoglobin cyclic-polymerization and to the generation of rigid, dense red blood cells (RBCs). We studied RBCs membrane proteome from human sickle RBCs, fractioned according to density compared to normal RBCs. 2-DE followed by MS analysis was carried out. We identified 65 proteins differently expressed, divided into five major clusters according to their functions: (i) membrane-cytoskeleton proteins; (ii) metabolic enzymes; (iii) ubiquitin-proteasome-system; (iv) flotillins; (v) chaperones. HSP27, HSP70 and peroxiredoxin-II (Prx-II) showed the most relevant changes. They were differently recruited to sickle RBCs membrane in response to in vitro hypoxia. Potential markers were then validated in a transgenic-mouse model for SCD, the SAD mice, exposed to hypoxia mimicking acute SCD vaso-occlusive-crisis (VOCs); we found that HSP70 and HSP27 bound to RBCs membrane respectively after 12?h and 48?h of hypoxia, while Prx-II membrane binding was modulated during hypoxia. Our data indicate that HSP27 and HSP70 play a novel role as RBCs membrane protein protectors and as possibly new markers of severity of RBCs membrane damage during acute VOCs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号