首页 | 本学科首页   官方微博 | 高级检索  
     

融合机器学习与知识推理的可解释性框架
引用本文:李迪媛,康达周. 融合机器学习与知识推理的可解释性框架[J]. 计算机系统应用, 2021, 30(7): 22-31. DOI: 10.15888/j.cnki.csa.007963
作者姓名:李迪媛  康达周
作者单位:南京航空航天大学 计算机科学与技术学院/人工智能学院, 南京 211106;南京航空航天大学 高安全系统的软件开发与验证技术工信部重点实验室, 南京 211106;软件新技术与产业化协同创新中心, 南京 210023
基金项目:十三五装备预研项目(41402020501,41402020101)
摘    要:针对基于规则的可解释性模型可能出现的规则无法反映模型真实决策情况的问题, 提出了一种融合机器学习和知识推理两种途径的可解释性框架. 框架演进目标特征结果和推理结果, 在二者相同且都较为可靠的情况下实现可解释性. 目标特征结果通过机器学习模型直接得到, 推理结果通过子特征分类结果结合规则进行知识推理得到, 两个结果是否可...

关 键 词:可解释性  机器学习  知识推理
收稿时间:2020-10-21
修稿时间:2020-11-18

Interpretable Framework for Integrating Machine Learning and Knowledge Reasoning
LI Di-Yuan,KANG Da-Zhou. Interpretable Framework for Integrating Machine Learning and Knowledge Reasoning[J]. Computer Systems& Applications, 2021, 30(7): 22-31. DOI: 10.15888/j.cnki.csa.007963
Authors:LI Di-Yuan  KANG Da-Zhou
Affiliation:College of Computer Science and Technology/College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; Key Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China
Abstract:
Keywords:interpretability  machine learning  knowledge reasoning
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号