首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的可见光遥感图像云判别算法
引用本文:赵敏,张荣,尹东,王奎. 一种新的可见光遥感图像云判别算法[J]. 遥感技术与应用, 2012, 27(1): 106-110. DOI: 10.11873/j.issn.1004-0323.2012.1.106
作者姓名:赵敏  张荣  尹东  王奎
作者单位:(中国科学技术大学电子工程与信息科学系,安徽 合肥 230027)
摘    要:为了解决由于云层遮挡所引起的数据利用率低等问题,提出了一种新的基于支持向量机(SVM)与无监督聚类算法相结合的分类算法,实现可见光遥感图像快速高效地自动云判别。该算法首先使用ISODATA进行聚类,再利用聚类结果为SVM挑选训练集,从而大大减少SVM的训练时间,融合了SVM准确率高与ISODATA聚类速度快的优势。结果表明:该算法使得SVM的训练时间降低至单独使用SVM算法所需训练时间的2%,基本满足实时性需求,并保证分类正确率达90%以上。

关 键 词:云判别  SVM  聚类  
收稿时间:2011-04-27

Cloud Classification Algorithm for Optical Remote Sensing Image
Zhao Min,Zhang Rong,Yin Dong,Wang Kui. Cloud Classification Algorithm for Optical Remote Sensing Image[J]. Remote Sensing Technology and Application, 2012, 27(1): 106-110. DOI: 10.11873/j.issn.1004-0323.2012.1.106
Authors:Zhao Min  Zhang Rong  Yin Dong  Wang Kui
Affiliation:(Department of Electronic Engineering and Information Science,University of Science and Technology of China,Hefei 230027,China)
Abstract:Cloud shelter in the optical remote sensing image may cause low data utilization rate and affect the subsequent process of remote sensing image such as target identification,so the research of real time and efficient cloud detection method is very important.We proposed a high speed and high accuracy classification algorithm for the cloud classification based on the combination of Support Vector Machine(SVM) and unsupervised clustering algorithm.This method uses the ISODATA clustering results to select the training set for SVM in order to reduce the training time of SVM.It takes advantage of the high accuracy capability of SVM and the fast clustering speed of ISODATA.The experiment shows that the SVM training time in the proposed method is greatly lower than it in the method using SVM alone,and the proposed method can improve the detection rate.
Keywords:Cloud classification  SVM  Clustering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号