首页 | 本学科首页   官方微博 | 高级检索  
     


Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control
Affiliation:1. Department of Electrical Engineering, National Taiwan Normal University, Taipei 106, Taiwan;2. Institute of Automation Technology, National Taipei University of Technology, Taipei 106, Taiwan
Abstract:A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master–slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.
Keywords:Mean deviation coupling  Synchronization control  Permanent magnet synchronous motor  Second-order adaptive sliding mode control  Synchronization error
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号