首页 | 本学科首页   官方微博 | 高级检索  
     


Electro-magnetic stress-induced degradation of insulation vacuum of a large cryo-magnetic system
Affiliation:1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;2. College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
Abstract:In superconducting magnets, the cold mass is placed in a vacuum vessel to reduce heat load to the liquid helium system. Helium leaks into the vacuum vessel can degrade the insulation vacuum, which can, in turn, cause an increase in the heat load to the liquid helium system. These leaks are called cold leaks, as they show up when the coil is cooled with liquid helium. K500 superconducting cyclotron magnet at Variable Energy Cyclotron Centre, Kolkata has such cold leaks in the helium vessel that developed during cool down. The leak rate increases with the increase of current in the superconducting coils. This paper describes a series of experiments carried out on the superconducting cyclotron magnet to find the level of degradation of insulation vacuum and measure the increase in heat load with magnet current. The leak rate was also measured and the leak size was estimated analytically. Detail magneto-structural analysis was done using Finite Element Method (FEM) to identify highly stressed zones in the helium vessel and found out that highly stressed zones coincide with the weld zones. The magneto-structural stress was applied on an estimated size of single crack and found that crack tip stress could reach beyond elastic limit of the material. We can predict that the full design current may be unachievable in this situation. Mitigation of increased heat load was also done using an additional vacuum pump for the insulation vacuum space.
Keywords:Insulation vacuum  Residual gas conduction  Superconducting magnet
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号