首页 | 本学科首页   官方微博 | 高级检索  
     


CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30–35 K using mixed stainless steel mesh regenerator matrices
Affiliation:2. Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;3. Key Laboratory of Space Energy Conversion Technologies, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China;4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:This paper presents the CFD modeling and experimental verifications of a single-stage inertance tube coaxial Stirling-type pulse tube cryocooler operating at 30–35 K using mixed stainless steel mesh regenerator matrices without either double-inlet or multi-bypass. A two-dimensional axis-symmetric CFD model with the thermal non-equilibrium mode is developed to simulate the internal process, and the underlying mechanism of significantly reducing the regenerator losses with mixed matrices is discussed in detail based on the given six cases. The modeling also indicates that the combination of the given different mesh segments can be optimized to achieve the highest cooling efficiency or the largest exergy ratio, and then the verification experiments are conducted in which the satisfactory agreements between simulated and tested results are observed. The experiments achieve a no-load temperature of 27.2 K and the cooling power of 0.78 W at 35 K, or 0.29 W at 30 K, with an input electric power of 220 W and a reject temperature of 300 K.
Keywords:Single-stage  Coaxial Stirling-type pulse tube cryocooler  Mixed stainless steel mesh regenerator matrix  CFD modeling  Experimental verification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号