首页 | 本学科首页   官方微博 | 高级检索  
     


A global optimization method for model selection in chemical reactions networks
Affiliation:1. Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge 02139, USA
Abstract:Model inference is a challenging problem in the analysis of chemical reactions networks. In order to empirically test which, out of a catalogue of proposed kinetic models, is governing a network of chemical reactions, the user can compare the empirical data obtained in one experiment against the theoretical values suggested by the models under consideration. It is thus fundamental to make an adequate choice of the decision variables (e.g. initial concentrations of the different species in the tank) in order to have maximal separation between sets of concentrations provided by the theoretical models, making then easier to identify which of the theoretical models yields data closest to those obtained empirically under identical conditions.In this paper we illustrate how global optimization techniques can be successfully used to address the problem of model separation, as a basis for model selection. Some examples illustrate the usefulness of our approach.
Keywords:Model selection  Chemical reactions networks  Kinetic models  Global optimization  Variable neighborhood search
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号