摘 要: | 针对故障诊断中特征提取不充分和复杂性,对未知故障无法学习,诊断模型自适应能力差的问题,提出一种B细胞免疫卷积神经网络的级联故障诊断模型。在检测阶段用并行的卷积神经网络对时间窗内振动信号的时域波形和频域波形分别进行特征提取,通过分类器对故障进行识别,对诊断结果进行可靠性评估;然后根据评估结果决定后续免疫过程;在遇见未知故障类型时,把卷积神经网络提取到的特征映射为抗原,通过B细胞算法对抗原进行学习,把生成的新检测器放入未知故障知识库中,完成未知故障的学习和识别。文中采用美国凯斯西储大学公布的轴承数据集,实验结果表明,提出的B细胞免疫卷积神经网络对已知故障识别准确率高于基于特征提取的相关技术,其检测准确率提高了4.86%左右,而且能够很好地学习和识别未知故障,自适应动态变化的环境。
|