摘 要: | 针对目前肺部肿瘤计算机辅助诊断模型存在的识别精度不高和漏诊率、误诊率降低困难等问题,提出一种基于集成深度信念网络(DBN)的肺部肿瘤计算机辅助诊断模型。首先,探讨不同的隐层数和隐层节点数对DBN识别性能的影响,从而确定合适的网络结构,并以该网络结构在三个模态(CT,PET,PET/CT)肺部图像构成的样本空间构建三个单一DBN个体分类器(CT-DBN,PET-DBN,PET/CT-DBN);然后,探讨输入图像大小、RBM学习率、训练批次大小、反向传播次数对DBN识别性能的影响,从而确定合适的参数训练三个单一DBN个体分类器;最后,采用相对多数投票法对三个DBN个体分类器进行集成,得到该模型的最终结果。实验结果表明,基于集成DBN的肺部肿瘤计算机辅助诊断模型的整体性能优于三个单一DBN个体分类器。
|