摘 要: | 针对高光谱遥感图像以模式识别的方式进行人工智能检测,一直存在时效性与便利性差的问题,提出一种基于模式识别技术的高光谱遥感图像检测新方法。通过高光谱遥感图像邻域中像素灰度的加权均值对模板中中心像素进行替代,通过邻域平均法令邻域像素更加均衡化,减弱噪声点,完成对高光谱遥感图像的预处理。通过平均值法实现相邻帧图像的拼接,对重叠部分帧间差分进行计算,实现高光谱遥感图像的进一步处理。结合相对温差法和拓扑矩阵修正方法对高光谱遥感图像中的异常情况进行检测,确定高光谱遥感图像中的过热区域。实验结果表明,所提方法对高光谱遥感图像的处理性能好,对一次特征检测准确性高。
|