首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte
Authors:Kwiyong Kim  Chung-Yul Yoo  Jong-Nam Kim  Hyung Chul Yoon  Jong-In Han
Affiliation:1.Department of Civil and Environmental Engineering,KAIST,Daejeon,Korea;2.Advanced Materials & Devices Laboratory,Korea Institute of Energy Research,Daejeon,Korea;3.Petroleum and Gas Laboratory,Korea Institute of Energy Research,Daejeon,Korea
Abstract:Nano-Fe2O3 and CoFe2O4 were suspended in molten salt of alkali-metal chloride (LiCl-KCl-CsCl) and their catalytic activity in electrochemical ammonia synthesis was evaluated from potentiostatic electrolysis at 600 K. The presence of nanoparticle suspension in the molten chloride resulted in improved production of NH3, recording NH3 synthesis rate of 1.78×10?10 mol s?1 cm?2 and 3.00×10?10 mol s?1 cm?2 with CoFe2O4 and Fe2O3, which are 102% and 240% higher than that without the use of a nanocatalyst, respectively. We speculated that the nanoparticles triggered both the electrochemical reduction of nitrogen and also chemical reaction between nitrogen and hydrogen that was produced from water electro-reduction on cathode. The use of nanocatalysts in the form of suspension offers an effective way to overcome the sluggish nature of nitrogen reduction in the molten chloride electrolyte.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号