首页 | 本学科首页   官方微博 | 高级检索  
     


Electrodeposition of nanocrystalline copper thin films from 1-ethyl-3-methylimidazolium ethylsulphate ionic liquid
Authors:Tomin Liu  Rui Vilar  Sónia Eugénio  Joseph Grondin  Yann Danten
Affiliation:1. Department of Chemical Engineering and ICEMS, Instituto de Ciências e Engenharia de Materiais e Superfícies, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
2. Institut des Sciences Moléculaires, Université Bordeaux 1, CNRS UMR 5255, Batiment A12, 351 cours de la libération, 33405, Talence Cedex, France
Abstract:Copper thin films are increasingly important as interconnectors for the creation of smaller and better performing integrated circuits and electrodeposition from ionic liquid-based electrolytes could provide a greener fabrication method for these films. The electrodeposition of copper from copper(I) and copper(II) salt solutions in a low cost, widely available ionic liquid, 1-ethyl-3-methylimidazolium ethylsulphate, was studied using a range of different deposition potentials and temperatures. Three different electrolytes containing ~0.1 M of copper(I) chloride(CuCl), copper(II) chloride (CuCl2) and copper(II) sulphate (CuSO4) were used. Under similar deposition conditions, the films obtained from CuCl and CuSO4-based electrolytes presented better continuity than films obtained from CuCl2-based electrolyte. Continuous films with a homogeneous structure were obtained by electrodeposition from CuCl and CuSO4-based solutions at a constant potential of ?1.8 V and a temperature of 35 °C. Under similar deposition parameters, the films deposited from CuCl2-based electrolyte presented the largest particle size, while those deposited from copper(I) chloride and CuSO4-based solutions presented finer microstructures. X-ray diffraction analysis and energy dispersive X-ray spectroscopy showed that the deposits were crystalline and consisted mainly of copper, with traces of oxygen and sulphur resulting from residues of the ionic liquid. The films presented a nanocrystalline microstructure consisting of particles about 25 nm, aggregated in clusters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号