首页 | 本学科首页   官方微博 | 高级检索  
     


Two-dimensional modeling of selective CO oxidation in a hydrogen-rich stream
Authors:MH Akbari  M Vahabi
Affiliation:Centre for Fuel Cell Research, Faculty of Mechanical Engineering, Shiraz University, Shiraz, Iran
Abstract:In this study, carbon monoxide removal by preferential oxidation in a hydrogen-rich stream is simulated between two parallel infinite plates of 150 μm distance. A three-step kinetic is considered that includes carbon monoxide oxidation, hydrogen oxidation and water–gas shift reaction. The walls temperature is in the range of 80–120 °C. The function of this microreactor is to reduce carbon monoxide content from about 2% to below 10 ppm, suitable for use in a PEM fuel cell. Based on the problem conditions, the flow is in the continuum regime and application of the Navier–Stokes equations is admissible. In order to simulate the reacting flow, continuity, conservations of x- & y-momentum, conservation of energy, conservation of species, state equation and reaction rates are simultaneously solved through SIMPLE algorithm by utilizing power-law scheme. Effects of important parameters including walls temperature, steam content, CO content and O2/CO are assessed. It is observed that increasing walls temperature or oxygen content will increase both CO selectivity and conversion. It is also found that by steam addition, CO conversion is improved without significant change of CO selectivity. These results are in good agreement with previous published data.
Keywords:Fuel processing  Microreactor  Selective CO oxidation  CFD  SIMPLE algorithm  2D modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号