首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen production from methane under the interaction of catalytic partial oxidation,water gas shift reaction and heat recovery
Authors:Wei-Hsin Chen  Ting-Wei Chiu  Chen-I Hung
Affiliation:1. Department of Greenergy, National University of Tainan, Tainan 700, Taiwan, ROC;2. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
Abstract:Hydrogen production from the combination of catalytic partial oxidation of methane (CPOM) and water gas shift reaction (WGSR), viz. the two-stage reaction, in a Swiss-roll reactor is investigated numerically. Particular emphasis is placed on the interaction among the reaction of CPOM, the cooling effect due to steam injection and the excess enthalpy recovery with heat recirculation. A rhodium (Rh) catalyst bed sitting at the center of the reactor is used to trigger CPOM, and two different WGSRs, with the aids of a high-temperature (Fe–Cr-based) shift catalyst and a low-temperature (Cu–Zn-based) shift catalyst, are excited. Two important parameters, including the oxygen/methane (O/C) ratio and the steam/methane (S/C) ratio, affecting the efficiencies of methane conversion and hydrogen production are taken into account. The predictions indicate that the O/C ratio of 1.2 provides the best production of H2 from the two-stage reaction. For a fixed O/C ratio, the H2 yield is relatively low at a lower S/C ratio, stemming from the lower performance of WGSR, even though the cooling effect of steam is lower. On the contrary, the cooling effect becomes pronounced as the S/C ratio is high to a certain extent and the lessened CPOM leads to a lower H2 yield. As a result, with the condition of gas hourly space velocity (GHSV) of 10,000 h−1, the optimal operation for hydrogen production in the Swiss-roll reactor is suggested at O/C = 1.2 and S/C = 4–6.
Keywords:Hydrogen production and generation  Catalytic partial oxidation of methane (CPOM)  Water gas shift reaction (WGSR)  Steam reforming and CO2 reforming  Swiss-roll reactor  Heat recirculation and recovery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号