首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic spring constants for higher flexural modes of cantilever plates with applications to atomic force microscopy
Authors:Georg Hä  hner
Affiliation:EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
Abstract:In atomic force microscopy (AFM) a sharp tip fixed close to the free end of a cantilever beam interacts with a surface. The interaction can be described by a point-mass model of an equivalent oscillator with a single spring located at the position of the tip. However, other spring constants have to be used to describe the oscillation behavior correctly if forces are acting on the cantilever over an extended lateral range. A point-mass model is then no longer valid. In the present study we derive expressions for the spring constants of cantilevers that can interact with any part of their plan view area along the beam and for all flexural modes. The equations describe the oscillation behavior in the corresponding mass model and are based on the eigenfrequencies and modal shapes of the free cantilever. The results are of high practical relevance, for example if an AFM is operated in a higher flexural mode, if the tip is not located at the free end of the cantilever beam, or if the external conservative forces affecting cantilever movement are not restricted to a single point. The limitations of the approach are discussed.
Keywords:Atomic force microscopy   Microcantilevers   Spring constants   Higher flexural modes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号