首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography
Authors:Waleed Ahmed El-Said  Cheol-Heon Yea  Mi Jung  Hyuncheol Kim  Jeong-Woo Choi
Affiliation:1. Department of Interdisciplinary program of Integrated Biotechnology, Sogang University, #1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea;2. Department of Chemical & Biomolecular Engineering, Sogang University, #1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea
Abstract:In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.
Keywords:Atomic force microscopy  Cell adhesion  Polypyrrole  HMCF cell  HeLa cell  Nanowire
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号