首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel depth first search. Part II. Analysis
Authors:Vipin Kumar  V Nageshwara Rao
Affiliation:(1) Department of Computer Sciences, University of Texas at Austin, 78712 Austin, Texas
Abstract:This paper presents the analysis of a parallel formulation of depth-first search. At the heart of this parallel formulation is a dynamic work-distribution scheme that divides the work between different processors. The effectiveness of the parallel formulation is strongly influenced by the work-distribution scheme and the target architecture. We introduce the concept of isoefficiency function to characterize the effectiveness of different architectures and work-distribution schemes. Many researchers considered the ring architecture to be quite suitable for parallel depth-first search. Our analytical and experimental results show that hypercube and shared-memory architectures are significantly better. The analysis of previously known work-distribution schemes motivated the design of substantially improved schemes for ring and shared-memory architectures. In particular, we present a work-distribution algorithm that guarantees close to optimal performance on a shared-memory/ohgr-network-with-message-combining architecture (e.g. RP3). Much of the analysis presented in this paper is applicable to other parallel algorithms in which work is dynamically shared between different processors (e.g., parallel divide-and-conquer algorithms). The concept of isoefficiency is useful in characterizing the scalability of a variety of parallel algorithms.This work was supported by Army Research Office Grant No. DAAG29-84-K-0060 to the Artificial Intelligence Laboratory, and Office of Naval Research Grant N00014-86-K-0763 to the Computer Science Department at the University of Texas at Austin.
Keywords:Parallel algorithm  depth-first search  isoefficiency function  work distribution schemes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号