首页 | 本学科首页   官方微博 | 高级检索  
     


Slow alpha helix formation during folding of a membrane protein
Authors:ML Riley  BA Wallace  SL Flitsch  PJ Booth
Affiliation:Department of Biochemistry, Imperial College of Science, Technology, and Medicine, London, U.K.
Abstract:Very little is known about the folding of proteins within biological membranes. A "two-stage" model has been proposed on thermodynamic grounds for the folding of alpha helical, integral membrane proteins, the first stage of which involves formation of transmembrane alpha helices that are proposed to behave as autonomous folding domains. Here, we investigate alpha helix formation in bacteriorhodopsin and present a time-resolved circular dichroism study of the slow in vitro folding of this protein. We show that, although some of the protein's alpha helices form early, a significant part of the protein's secondary structure appears to form late in the folding process. Over 30 amino acids, equivalent to at least one of bacteriorhodopsin's seven transmembrane segments, slowly fold from disordered structures to alpha helices with an apparent rate constant of about 0.012 s-1 at pH 6 or 0.0077 s-1 at pH 8. This is a rate-limiting step in protein folding, which is dependent on the pH and the composition of the lipid bilayer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号