首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度Q学习的电热综合能源系统能量管理
引用本文:王新迎,赵琦,赵黎媛,杨挺. 基于深度Q学习的电热综合能源系统能量管理[J]. 电力建设, 2021, 42(3): 10-18. DOI: 10.12204/j.issn.1000-7229.2021.03.002
作者姓名:王新迎  赵琦  赵黎媛  杨挺
作者单位:中国电力科学研究院有限公司,北京市100192;天津大学电气自动化与信息工程学院,天津市300072
基金项目:国家电网有限公司科技项目"人工智能技术在电力系统的融合应用和战略规划研究"
摘    要:能量管理是电热综合能源系统运行优化的重要组成部分.然而,系统中可再生能源出力的波动性以及用户负荷的随机性使得能量优化管理问题充满挑战.针对此问题,文章提出了一种计及可再生能源和负荷需求不确定性的综合能源系统能量管理方法.将电热综合能源系统的能量管理问题表述为转移概率未知的马尔科夫决策过程,定义了系统的状态空间、动作空间...

关 键 词:能量管理  综合能源系统  强化学习  深度Q学习网络(DQN)
收稿时间:2020-07-17

Energy Management Approach for Integrated Electricity-Heat Energy System Based on Deep Q-Learning Network
WANG Xinying,ZHAO Qi,ZHAO Liyuan,YANG Ting. Energy Management Approach for Integrated Electricity-Heat Energy System Based on Deep Q-Learning Network[J]. Electric Power Construction, 2021, 42(3): 10-18. DOI: 10.12204/j.issn.1000-7229.2021.03.002
Authors:WANG Xinying  ZHAO Qi  ZHAO Liyuan  YANG Ting
Affiliation:1. China Electric Power Research Institute, Beijing 100192, China2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract:Energy management plays an important role in the operation optimization of integrated electricity-heat energy systems. However, the fluctuation of renewable energy power generation and the randomness of energy loads in the system make the energy management problem full of challenges. In order to solve this problem, this paper proposes an optimal energy management approach for integrated energy system considering the uncertainties of renewable energy and load demands. In this paper, the energy management problem of the system is expressed as a Markov decision process with unknown transition probability, and the state space, action space and reward function of the process are defined. In order to solve the Markov decision process, an optimal energy management approach based on deep Q-learning network is proposed. Simulation results show that the proposed method can adaptively respond to the random fluctuations of source and loads and realize the optimal energy management.
Keywords:energy management   integrated energy system   reinforcement learning   deep Q-learning network (DQN)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力建设》浏览原始摘要信息
点击此处可从《电力建设》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号