首页 | 本学科首页   官方微博 | 高级检索  
     

基于VMD及模糊相关分类器的滚动轴承故障诊断
引用本文:刘婷婷,张迪,王雪梅,葛明涛. 基于VMD及模糊相关分类器的滚动轴承故障诊断[J]. 机械设计与制造, 2019, 0(2): 222-225
作者姓名:刘婷婷  张迪  王雪梅  葛明涛
作者单位:郑州大学 西亚斯国际学院 电子工程系,河南 郑州,451150;郑州大学 西亚斯国际学院 电子工程系,河南 郑州,451150;郑州大学 西亚斯国际学院 电子工程系,河南 郑州,451150;郑州大学 西亚斯国际学院 电子工程系,河南 郑州,451150
摘    要:针对滚动轴承非平稳性的振动信号,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)及模糊相关分类器的故障诊断方法。首先,对振动信号进行VMD分解,计算分解后分量与原信号的互信息值,利用互信息值提取无噪声分量,获得重构信号;其次,利用模糊函数在处理非平稳信号方面的优越性,结合相关系数提出模糊相关分类器;最后,将多组不同工作状态的重构信号输入模糊相关分类器,对多组数据进行训练与测试。实验结果表明,该方法能够有效的诊断出滚动轴承三种工作状态,且检测率较支持向量机及神经网络高。

关 键 词:滚动轴承  故障诊断  变分模态分解  模糊相关分类器

Fault Diagnosis of Ball Bearing Based on VMD and ACC
LIU Ting-ting,ZHANG Di,WANG Xue-mei,GE Ming-tao. Fault Diagnosis of Ball Bearing Based on VMD and ACC[J]. Machinery Design & Manufacture, 2019, 0(2): 222-225
Authors:LIU Ting-ting  ZHANG Di  WANG Xue-mei  GE Ming-tao
Affiliation:(Department of Electronic Engineering, Sias International University, Zhengzhou University He’nan Zhengzhou 451150, China)
Abstract:Aiming at the no stationary characteristic of gear vibration signal, a recognition method based on Variational Mode Decomposition(VMD)and ambiguity correlation classification(ACC)is proposed. First, the vibration signal was decomposed by VMD, then a series of product function were obtained;Secondly, according to the mutual information, de-noised components was proposed to reconstruction, then, combining the correlation coefficient, ACC was proposed to identify the type of rolling bearing. Experimental results show that this method can effectively diagnosis three kinds of working condition, and the result is better than SVM or BP.
Keywords:Rolling Element Bearing  Fault Diagnosis  VMD  ACC
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号