首页 | 本学科首页   官方微博 | 高级检索  
     

Enhanced Strength and Corrosion Resistance of Mg–2Zn–0.6Zr Alloy with Extrusion
基金项目:the National Key Research and Development Program of China
摘    要:The microstructure, mechanical properties and corrosion behavior of Mg–2 Zn–0.6 Zr alloy under the as-cast and asextruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the asextruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg–2 Zn–0.6 Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.

收稿时间:2018-05-08

Enhanced Strength and Corrosion Resistance of Mg-2Zn-0.6Zr Alloy with Extrusion
Authors:Luan-Xiang Wang  Ren-Bo Song  Chang-Hong Cai  Jing-Yuan Li
Affiliation:1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract:The microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.6Zr alloy under the as-cast and as-extruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the as-extruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg-2Zn-0.6Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.
Keywords:Mg-2Zn-0  6Zr  Extrusion  Strength  Corrosion behavior  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号