首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包变换与核主成分分析的铣削颤振识别
引用本文:任静波,孙根正,陈冰,罗明. 基于小波包变换与核主成分分析的铣削颤振识别[J]. 噪声与振动控制, 2014, 34(5): 161-165
作者姓名:任静波  孙根正  陈冰  罗明
作者单位:( 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072 )
基金项目:西安市科划项目(CXY1313,CXY1338(5));西北工业大学研究生创业种子基金(Z2013034)
摘    要:提出一种基于小波包变换(wavelet packets transform, WPT)与核主成分分析(kernel principal component analysis,KPCA)的颤振识别方法。铣削颤振会抑制或增强某些频段内的信号,利用四层小波包分解与重构,得到16个频段内的重构信号,获得各重构信号的面积,并进行归一化处理,完成铣削颤振特征向量的选择。继而通过对比基于主成分分析(principal component analysis,PCA)与核主成分分析的特征提取方法的特征提取效果,选取KPCA对特征向量进行降维处理,最后以降维后的数据作为最小二乘支持向量机分类器的输入对铣削状态进行识别。结果表明,在小样本的情况下仍能有效、准确地对铣削状态进行分类,分类准确率达95.0 %。

关 键 词:振动与波   铣削颤振识别   小波包变换   核主成分分析   最小二乘支持向量机  
收稿时间:2013-12-10

Milling Chatter Identification Method Based on Wavelet Packet Transform and Kernel Principal Component Analysis
RENJing-bo,SUNGen-zheng,CHEN Bing,LUO Ming. Milling Chatter Identification Method Based on Wavelet Packet Transform and Kernel Principal Component Analysis[J]. Noise and Vibration Control, 2014, 34(5): 161-165
Authors:RENJing-bo  SUNGen-zheng  CHEN Bing  LUO Ming
Affiliation:( Key Laboratory of Contemporary Design and Integrated Manufacturing Technology Ministry ofEducation, Northwestern Polytechnical University, Xi’an 710072, China )
Abstract:A milling chatter identification method based on wavelet packet transform (WPT) and kernel principal component analysis (KPCA) is proposed. This method consists of four steps. In the first step, the measured milling force signals are decomposed and reconstructed by four-level WPT, so that the force signals can be allocated in a certain frequency band. In the second step, the reconstructed signal areas of different frequency bands are normalized and selected as a feature vector. In the third step, through the mutual comparison of the results of principal component analysis (PCA) method and KPCA method, the KPCA feature extraction method is selected for dimension reduction. Finally, the least squares support vector machine (LS-SVM) is designed for normal milling and chatter pattern classification. The experimental results prove that the method can identify the chatter accurately and effectively even in the case of small number of samples with an accuracy rate of 95.0%.
Keywords:vibration and wave  milling chatter detection  wavelet packets transform  kernel principal component analysis  least squares support vector machines
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《噪声与振动控制》浏览原始摘要信息
点击此处可从《噪声与振动控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号