首页 | 本学科首页   官方微博 | 高级检索  
     

互为Hilbert变换对的双正交小波构造
引用本文:王红霞,陈波,成礼智. 互为Hilbert变换对的双正交小波构造[J]. 计算机学报, 2006, 29(3): 441-447
作者姓名:王红霞  陈波  成礼智
作者单位:国防科学技术大学理学院数学与系统科学系,长沙,410073;国防科学技术大学理学院数学与系统科学系,长沙,410073;国防科学技术大学理学院数学与系统科学系,长沙,410073
基金项目:中国科学院资助项目;高等学校博士学科点专项科研项目
摘    要:证明了两个双正交小波滤波器组构成Hilbert变换对的充要条件,并从理论上说明了两个线性相位双正交小波系统构成Hilbert变换对的必要条件是它们的长度分别为奇数和偶数.在此基础上通过选择合适的小波消失矩和优化过程中的目标函数,提出了一种构造这类Hilbert变换对的新算法.采用该算法不但可以得到系数对称的线性相位小波滤波器组,而且在性能基本相当的条件下,滤波器长度较已有算法大幅度减小(以13/19和12/16小波为例,可以降到约为原来的1/2).通过适当调整设计参数,还可以得到全为有理系数的小波滤波器,从而进一步减少计算代价.实验表明上述构造得到的Hilbert变换在用于复数小波进行图像去噪时,处理时间可以降低为原来的2/3左右.

关 键 词:滤波器组(FB)  双正交小波  Hilbert变换对  复数小波
收稿时间:2004-06-28
修稿时间:2004-06-282005-11-16

The Design of Hilbert Transform Pairs of Biorthogonal Wavelet Bases
WANG Hong-Xia,CHEN Bo,CHENG Li-Zhi. The Design of Hilbert Transform Pairs of Biorthogonal Wavelet Bases[J]. Chinese Journal of Computers, 2006, 29(3): 441-447
Authors:WANG Hong-Xia  CHEN Bo  CHENG Li-Zhi
Affiliation:Department of Mathematics and System Science, School of Science, National University of Defense Technology, Changsha 410073
Abstract:The Hilbert transform pairs of biorthogonal wavelet bases are studied in this paper.A sufficient and necessary condition is given and proved,and a new algorithm for the design of Hilbert transform pairs is proposed.Being different from the existing algorithms,two linear phase wavelet filter banks are obtained with all symmetric coefficients here,by letting their length be odd and even separately and improving the goal function at the same time.Results of numerical experiments show that the above algorithm can shorten the length of FB efficiently in the similar approximation degree(Take 13/19 tap and 12/16 tap wavelets as an example,the lengths are reduced about 1/2).Especially,we can get a group of rational coefficients by adjusting the parameters in construction.Authors' work is valuable for the rapid and efficient application of many new wavelet theories such as complex wavelet and phaselet.
Keywords:filter banks   biorthogonal wavelet   Hilbert transform pairs   complex wavelet
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号