首页 | 本学科首页   官方微博 | 高级检索  
     

一种具有量子行为的细菌觅食优化算法
引用本文:章国勇, 伍永刚, 谭宇翔. 一种具有量子行为的细菌觅食优化算法[J]. 电子与信息学报, 2013, 35(3): 614-621. doi: 10.3724/SP.J.1146.2012.00892
作者姓名:章国勇 伍永刚 谭宇翔
作者单位:华中科技大学水电与数字化工程学院 武汉 430074
基金项目:“十一五”国家科技支撑计划重大项目(2009BAC56B03);湖北省自然科学基金(2011CDA032)资助课题
摘    要:为改善细菌觅食优化(BFO)算法中群体信息共享机制,增强算法的全局搜索性能,该文将细菌个体放在量子空间中描述,根据细菌群体信息建立量子化的势能阱模型,通过蒙特卡洛随机采样完成繁殖操作,使得细菌群能对整个空间进行搜索。针对BFO算法中趋化步长一致的缺陷,该文提出了一种动态缩进控制策略,在保证算法收敛性的同时大大增加了个体全局寻优的几率。标准测试函数的仿真结果表明,所提出算法具有精度高、成功率大、全局寻优性能强的特点。

关 键 词:信息处理   量子行为   细菌觅食   趋化步长   动态缩进
收稿时间:2012-07-12
修稿时间:2012-10-26

Bacterial Foraging Optimization Algorithm with Quantum Behavior
Zhang Guo-Yong, Wu Yong-Gang, Tan Yu-Xiang. Bacterial Foraging Optimization Algorithm with Quantum Behavior[J]. Journal of Electronics & Information Technology, 2013, 35(3): 614-621. doi: 10.3724/SP.J.1146.2012.00892
Authors:Zhang Guo-yong Wu Yong-gang Tan Yu-xiang
Affiliation:School of Hydropower and Informaiton Engineering, Huazhong University of Science and Teleology, Wuhan 430074, China
Abstract:In order to enhance the global optimization capability and quorum sensing mechanism of Bacterial Foraging Optimization (BFO) algorithm, a novel Bacterial Foraging Optimization algorithm with Quantum Behavior (QBFO) is proposed. In this method, the bacteria individual is described in the quantum space and a potential well model is created. Using Monte Carlo method to achieve the reproduction of bacterial swarming, and which makes the population are able to search the whole space. In view of the defects of the fixed swim step in bacterial foraging algorithm, a dynamic indented control strategy is introduced in this paper, which ensures the convergence of algorithm and increases the possibility of exploring a global optimum. The experiment results on classic functions demonstrate the global convergence ability of the proposed method with better accuracy and more probability of finding global optimum.
Keywords:Information processing  Quantum behavior  Bacterial Foraging (BF)  Chemotactic step size  Dynamic indented strategy
本文献已被 CNKI 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号