Cholinergic modulation of extracellular ATP-induced cytoplasmic calcium concentrations in cochlear outer hair cells |
| |
Authors: | MA Wikstr?m G Lawoko E Heilbronn |
| |
Affiliation: | Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska institutet, Stockholm, Sweden. |
| |
Abstract: | Outer hair cells (OHC) of the mammalian cochlea modulate the inner hair cell (IHC) mechanoelectrical transduction of sound. They are contacted by synapsing efferent neurons from the CNS, their main efferent neurotransmitter being acetylcholine (ACh). OHC function and in particular their control of [Ca2+]i is highly important and is modulated by ACh and also by other substances including extracellular (EC) ATP. OHC carry at their efferent synapse a not yet completely identified neuronal type of ionotropic ACh receptor (AChR), with an unusual pharmacology, which is, in vivo and in vitro, reversibly blocked by alpha-bungarotoxin (alpha-bgtx). The AChR mediates a fast influx of Ca2+ into OHC which, in turn, activates a closeby located outwardly-directed Ca(2+)-dependent K(+)-channel, thus shortly hyperpolarizing the cell. A cloned homomeric alpha 9 nAChR mimicks the function and pharmacology of this receptor. We here report results from a study designed to observe only slower effects triggered by EC ATP and the ACh-AChR system. EC presence of ATP at OHC increases [Ca2+]i by activating both P2x and P2y purinoceptors and also by indirect activation of OHC L-type Ca(2+)-channels. The L-type channel activation is responsible for a large part of the [Ca2+]i increase. Simultaneous EC presence of ACh and ATP at OHC was found to depress ATP-induced effects on OHC [Ca2+]i, an effect that is completely blocked in the presence of alpha-bgtx. Our observations suggest that the ACh-AChR system is involved in the modulation of the observed EC ATP-triggered events; possibly the OHC AChR is able to act both in its well known rapid ionotropic way, but also, perhaps after modification in a slower, metabotropic way interfering with the EC ATP-induced [Ca2+]i increase. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|