Energy‐efficient task allocation with quality of service provisioning for concurrent applications in multi‐functional wireless sensor network systems |
| |
Authors: | Wei Li,Flá via C. Delicato,Paulo F. Pires,Albert Y. Zomaya |
| |
Abstract: | Multi‐functional wireless sensor network (WSN) system is a new design trend of WSNs, which are evolving from dedicated application‐specific systems to an integrated infrastructure that supports the execution of multiple concurrent applications. Such system offers inherent advantages in terms of cost and flexibility because it allows the effective utilization of available sensors and resource sharing among multiple applications. However, sensor nodes are very constrained in resources, mainly regarding their energy. Therefore, the usage of such resources needs to be carefully managed, and the sharing with several applications imposes new challenges in achieving energy efficiency in these networks. In order to exploit the full potential of multi‐functional WSN systems, it is crucial to design mechanisms that effectively allocate tasks onto sensors so that the entire system lifetime is maximized while meeting various application requirements. However, it is likely that the requirements of different applications cannot be simultaneously met. In this paper, we present the Multi‐Application Requirements Aware and Energy Efficiency algorithm as a new resource allocation heuristic for multi‐functional WSN system to maximize system lifetime subject to various application requirements. The heuristic effectively deals with different quality of service parameters (possibly conflicting) trading those parameters and exploiting heterogeneity of multiple WSNs. Copyright © 2013 John Wiley & Sons, Ltd. |
| |
Keywords: | wireless sensor network task allocation energy efficiency resource management system lifetime |
|
|