首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进Mask R-CNN的卫星目标部位检测方法
引用本文:杨钦宁,佘浩平,庞羽佳. 基于改进Mask R-CNN的卫星目标部位检测方法[J]. 计算机测量与控制, 2021, 29(11): 12-17. DOI: 10.16526/j.cnki.11-4762/tp.2021.11.003
作者姓名:杨钦宁  佘浩平  庞羽佳
作者单位:北京理工大学宇航学院,北京100081;中国空间技术研究院钱学森空间技术实验室,北京100094
摘    要:针对卫星部件维修更换、燃料加注、废弃卫星回收等空间在轨服务中需解决的目标卫星部位检测问题,在Mask R-CNN的基础上,改进其主干网络结构并缩减分类回归、Mask分支通道数,提出了一种改进的实例分割网络模型Ring-Engine-Mask R-CNN,使用实物模型图像和3dsMax生成的仿真图像建立了专用数据集,给出了一种基于深度学习的卫星目标部位检测方法;实验结果表明,该方法能较好的完成卫星星箭对接环和远地点发动机喷管两种目标部位的检测分割,相较于传统的网络模型,在缩小了模型规模的同时,具有更高精度和更快的检测速度.

关 键 词:卫星目标部位检测  深度学习  图像数据集  卷积神经网络  Mask R-CNN
收稿时间:2021-03-23
修稿时间:2021-04-18

Satellite Target Part Detection Method Based on Improved Mask R-CNN
YANG Qinning,SHE Haoping,PANG Yujia. Satellite Target Part Detection Method Based on Improved Mask R-CNN[J]. Computer Measurement & Control, 2021, 29(11): 12-17. DOI: 10.16526/j.cnki.11-4762/tp.2021.11.003
Authors:YANG Qinning  SHE Haoping  PANG Yujia
Abstract:Aiming at the target satellite detection problems that need to be solved in space on-orbit services such as satellite component maintenance and replacement, fuel refueling, and recycling of abandoned satellites, an improved instance segmentation network model Ring-Engine-Mask R-CNN is proposed on the basis of Mask R-CNN by improve the structure of its backbone network and reducing channels of classification, regression, Mask branch. The network uses physical model images and simulation images generated by 3ds Max to establish a dedicated dataset, and presents a satellite target detection method based on deep learning. The experimental results show that this method can complete the detection and segmentation task of the two target parts of the satellite marman ring and the apogee engine nozzle better. Compared with the traditional network model, it has a smaller model volume. Meanwhile, it has a higher detection accuracy and faster speed.
Keywords:Satellite target part detection   Deep learning   Image dataset   R-CNN   Mask R-CNN
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机测量与控制》浏览原始摘要信息
点击此处可从《计算机测量与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号