首页 | 本学科首页   官方微博 | 高级检索  
     


Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel
Authors:Lin Liu  Min Xiao  Xiuli Song
Affiliation:1.College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing,China;2.School of Cyber Security and Information Law,Chongqing University of Posts and Telecommunications,Chongqing,China
Abstract:Semiquantum communication permits a communication party with only limited quantum ability (i.e., “classical” ability) to communicate securely with a powerful quantum counterpart and will obtain a significant advantage in practice when the completely quantum world has not been built up. At present, various semiquantum schemes for key distribution, secret sharing and secure communication have been proposed. In a quantum dialogue (QD) scenario, two communicants mutually transmit their respective secret messages and may have equal power (such as two classical parties). Based on delegated quantum computation model, this work extends the original semiquantum model to the authenticated semiquantum dialogue (ASQD) protocols, where two “classical” participants can mutually transmit secret messages without any information leakage and quantum operations are securely delegated to a quantum server. To make the proposed ASQD protocols more practical, we assume that the quantum channel is a collective noise channel and the quantum server is untrusted. The security analysis shows that the proposed protocols are robust even when the delegated quantum server is a powerful adversary.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号