首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of supports on the redox performance of pyrite cinder in chemical looping combustion
Authors:Zhong Ma  Chuan Yuan  Shuai Zhang  Yonggang Lu  Junhui Xiong
Affiliation:1. School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China;2. State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;3. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Abstract:Chemical looping combustion (CLC) is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO2 capture.The develop-ment of oxygen carriers with low cost and high redox performance is crucial to the whole efficiency of CLC process.As the solid by-product from the sulfuric acid production,pyrite cinder presented excellent redox performance as an oxygen carrier in CLC process.The main components in pyrite cinder are Fe2O3,CaSO4,Al2O3 and SiO2 in which Fe2O3 is the active component to provide lattice oxygen.In order to sys-tematic investigate the functions of supports (CaSO4,Al2O3 and SiO2) in pyrite cinder,three oxygen car-riers (Fe2O3-CaSO4,Fe2O3-Al2O3 and Fe2O3-SiO2) were prepared and evaluated in this study.The results showed that Fe2O3-CaSO4 displayed high redox activity and cycling stability in the multiple redox cycles.However,both Fe2O3-Al2O3 and Fe2O3-SiO2 experienced serious deactivation during redox reactions.It indicated that the inert Fe-Si solid solution (Fe2SiO4) was formed in the spent Fe2O3-SiO2 sample,which decreased the oxygen carrying capacity of this sample.The XPS results showed that the oxygen species on the surface of Fe2O3-CaSO4 could be fully recovered after the 20 redox cycles.It can be concluded that CaSO4 is the key to the high redox activity and cycling stability of pyrite cinder.
Keywords:Chemical looping  Pyrite cinder  Supports  Fixed-bed  Redox performance  Waste treatment
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号