首页 | 本学科首页   官方微博 | 高级检索  
     

增强蚁群算法的机器人最优路径规划
引用本文:齐勇,魏志强,殷波,费云瑞,于忠达,庄晓东. 增强蚁群算法的机器人最优路径规划[J]. 哈尔滨工业大学学报, 2009, 41(3): 130-133
作者姓名:齐勇  魏志强  殷波  费云瑞  于忠达  庄晓东
作者单位:山东省科学院,海洋仪器仪表研究所,青岛,266001;中国海洋大学计算机科学系,青岛,266100;中国海洋大学计算机科学系,青岛,266100
摘    要:为解决复杂环境中机器人最优路径规划问题,本文结合增强学习和人工势场法的原理,提出一种基于增强势场优化的机器人路径规划方法,引入增强学习思想对人工势场法进行自适应路径规划.再把该规划结果作为先验知识,对蚁群算法进行初始化,提高了蚁群算法的优化效率,同时克服了传统人工势场法的局部极小问题.仿真实验结果表明,该方法在复杂环境中,对机器人的路径规划效果令人满意.

关 键 词:增强学习  增强势场  蚁群算法  最优路径

Path planning optimization based on reinforcement of artificial potential field
QI Yong,WEI Zhi-qiang,YIN Bo,FEI Yun-rui,YU Zhong-da,ZHUANG Xiao-dong. Path planning optimization based on reinforcement of artificial potential field[J]. Journal of Harbin Institute of Technology, 2009, 41(3): 130-133
Authors:QI Yong  WEI Zhi-qiang  YIN Bo  FEI Yun-rui  YU Zhong-da  ZHUANG Xiao-dong
Affiliation:1.Institute of Oceanagraphic Instrumentation,Shandong Academy of Science,Qingdao 266001,China;2.Dept.of Computer Science,Ocean University of China,Qingdao 266100,China)
Abstract:In order to solve the problem of optimal path planning for robot in complex environment,a path planning method based on the artificial potential field optimization is proposed in this paper.The ant algorithm is initialized by the planning result of the artificial potential field reinforcement as the prior knowledge,which improves the algorithm’s efficiency.On the other hand,the local minima problem in the artificial potential field method is solved successfully.The result of simulation shows that the method in this paper works well in solving the relevant problems.
Keywords:learning reinforcement  potential field reinforcement  ant colony algorithm  optimal path planning
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号