首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于图像区域分割的小波去噪方法
引用本文:龚劬,安艳萍,罗淑芬. 一种基于图像区域分割的小波去噪方法[J]. 计算机工程与应用, 2010, 46(34): 191-194. DOI: 10.3778/j.issn.1002-8331.2010.34.058
作者姓名:龚劬  安艳萍  罗淑芬
作者单位:重庆大学 数理学院,重庆 400044
摘    要:提出一种基于区域分割的图像去噪方法。该方法利用具有平移不变性的DWT去噪法和NeighShrink_ SURE去噪法对平滑图像和纹理图像分别具有良好去噪效果,遂将含噪图像进行区域分割得到平滑、突变和过渡三个区域,最终去噪图像的三个区域分别由两种方法得到的去噪图像加权来确定。实验结果显示,该方法利用了前两种算法的优点,得到了具有较高峰值信噪比、较完整保留图像细节而且具有更佳视觉效果的去噪图像。

关 键 词:图像去噪  区域分割  具有平移不变性的离散小波变换  邻域阈值收缩
收稿时间:2009-04-14
修稿时间:2009-6-30 

Image denoising combined with wavelet transform based on region segmentation
GONG Qu,AN Yan-ping,LUO Shu-fen. Image denoising combined with wavelet transform based on region segmentation[J]. Computer Engineering and Applications, 2010, 46(34): 191-194. DOI: 10.3778/j.issn.1002-8331.2010.34.058
Authors:GONG Qu  AN Yan-ping  LUO Shu-fen
Affiliation:College of Mathematics and Physics,Chongqing University,Chongqing 400044,China
Abstract:A novel image denoising method based on region segmentation is proposed in this paper.Hard thresholding with linear shift invariant Discrete Wavelet Transform(DWT) and NeighShrink with Stein's Unbiased Risk Estimate(SURE) are most important and efficient methods for image denoising.The former is much fitter than the later for the smooth image denoising, and it is opposite for the texture.The proposed algorithm based on the two methods.Firstly, the noisy image is denoised by hard thresholding with linear shift invariant DWT and by NeighShrink with SURE respectively,then two denoised images are obtained.Secondly,the noisy image is divided to be smooth region,non-smooth region and transitional region.The final denoising image is that the three regions are respectively determined by the two denoised images with the certain proportional divisor.The experimental result shows that the proposed algorithm can absorb the advantages of the two methods,a denoised image,with higher PSNR,rich texture details and better vision and quality,is obtained.
Keywords:image denoising  region segmentation  linear shift invariant discrete wavelet transform  NeighShrink
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号