首页 | 本学科首页   官方微博 | 高级检索  
     

基于简化差别矩阵的增量式属性约简
引用本文:葛浩,李龙澍,杨传健. 基于简化差别矩阵的增量式属性约简[J]. 四川大学学报(工程科学版), 2013, 45(1): 116-124
作者姓名:葛浩  李龙澍  杨传健
作者单位:1. 安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039;滁州学院机械与电子工程学院,安徽滁州239012
2. 安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039;安徽大学计算机科学与技术学院,安徽合肥230039
3. 滁州学院计算机与信息工程学院,安徽滁州,239012
基金项目:安徽省自然科学基金:090412054
摘    要:新对象添加到决策表后,已有的属性约简将会发生改变,需要对其动态更新.为此,首先给出简化决策表和简化差别矩阵的定义,并证明了基于简化差别矩阵的属性约简与正区域的属性约简是等价的;然后,分析增量对象的不同情况,将增量属性约简映射到简化决策表上来实现,由此设计基于简化差别矩阵的增量式属性约简算法,并对算法进行改进;最后,利用实例和实验验证了所提出算法的正确性和高效性.

关 键 词:粗糙集  属性约简  差别集  差别矩阵  增量式算法
收稿时间:2012-09-12
修稿时间:2012-11-08

Incremental Attribute Reduction Based on Simplified Discernibility Matrix
Ge Hao,Li Longshu and Yang Chuanjian. Incremental Attribute Reduction Based on Simplified Discernibility Matrix[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1): 116-124
Authors:Ge Hao  Li Longshu  Yang Chuanjian
Affiliation:Key Lab. of Computation Intelligence and Signal Processing of Education Ministry,Anhui Univ.;School of Mechanical and Electronic Eng.,Chuzhou Univ.;Key Lab. of Computation Intelligence and Signal Processing of Education Ministry,Anhui Univ.;School of Computer Sci. and Technol.,Anhui Univ.;School of Computer and Information Eng., Chuzhou Univ.
Abstract:It is necessary that the attribute reduction of decision table will be updated dynamically, when the decision table object is updated and the original attribute reduction may be changed. Firstly, the definitions of the simplified decision table and attribute reduction based on simplified discernibility matrix are proposed. It is proved that attribute reduction acquired from the definition is equivalence to attribute reduction based on positive region. Secondly, the different cases of added object are analyzed, and incremental attribute reduction is mapped to the simplify decision table to achieve. Based on above, the attribute reduction algorithm based on simplified discernibility matrix is designed and the algorithm is further improved. Finally, both of example and experiment results show that the algorithms are effective.
Keywords:rough set   attribute reduction   discernibility set   discernibility matrix   incremental algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号