首页 | 本学科首页   官方微博 | 高级检索  
     


Crack propagation of planar and corrugated solid oxide fuel cells during cooling process
Authors:Jiamiao Xie  Wenqian Hao  Fenghui Wang
Abstract:The corrugated solid oxide fuel cell (SOFC) can effectively improve energy density and transformation efficiency compared with conventional planar SOFC, but its stability and durability have not been systematically analyzed. The residual stress of SOFC may lead to crack initiation and propagation during cooling process, so stress distributions of planar and corrugated SOFCs are simulated to analyze the location of crack initiation. The materials of electrolyte, anode, and cathode in this paper are yttria‐stabilization zirconia (YSZ), Ni‐YSZ, and strontium‐doped lanthanum manganite (LSM), respectively. The result shows that the edge of cell is more prone to cracking. Therefore, precracks including edge crack and middle crack are introduced into anode‐electrolyte interfaces to investigate crack propagation of two types of SOFCs during cooling process. For corrugated SOFC, the cracks propagate more slowly, and the cell is less prone to interfacial delamination compared with planar SOFC. In addition, the interface energy release rates are obtained to further analyze crack propagation of two types of SOFCs, and the corrugated SOFC has lower energy release rate. The research in this paper provides guidance for stability analysis and lays a foundation for future mechanical analysis of corrugated SOFC.
Keywords:corrugated interface  crack propagation  interface crack  solid oxide fuel cell  thermal stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号