首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of temperature distribution on a new linear Fresnel receiver assembly under high solar flux
Authors:Abhishek Parikh  Janna Martinek  Greg Mungas  Nick Kramer  Robert Braun  Guangdong Zhu
Abstract:A linear Fresnel collector design with an operation temperature of 300°C or above typically requires a solar flux concentration ratio of at least 20 on the surfaces of the receiver assembly. For the commercial linear Fresnel collector design in this work, the receiver assembly includes a secondary reflector and an evacuated receiver tube. The high‐concentration solar flux may impose additional operating‐temperature requirements on the secondary reflector and receiver tube. Thus, a careful heat‐transfer analysis is necessary to understand the operating temperature of the receiver assembly component surfaces under design and off‐design conditions to guide appropriate material selections. In this work, a numerical heat‐transfer analysis is performed to calculate the temperature distribution of the surfaces of the secondary reflector and receiver glass envelope for a commercial collector design. Operating conditions examined in the heat‐transfer analysis include various wind speeds and solar concentration ratios. The results indicate a surface temperature higher than 100°C on the secondary reflector surface, which suggests that a more advanced secondary reflector material is needed. The established heat‐transfer model can be used for optimization of the other types of linear Fresnel collectors.
Keywords:concentrating solar power  linear Fresnel  operating temperature  secondary reflector  solar flux
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号