首页 | 本学科首页   官方微博 | 高级检索  
     


Multi‐objective design optimization for mini‐channel cooling battery thermal management system in an electric vehicle
Authors:Wei Li  Xiongbin Peng  Mi Xiao  Akhil Garg  Liang Gao
Abstract:Lithium‐ion battery packs have been generally used as the power source for electric vehicles. Heat generated during discharge and limited space in the battery pack may bring safety issues and negative effect on the battery pack. Battery thermal management system is indispensable since it can effectively moderate the temperature rise by using a simple system, thereby improving the safety of battery packs. However, the comprehensive investigation on the optimal design of battery thermal management system with liquid cooling is still rare. This article develops a comprehensive methodology to design an efficient mini‐channel cooling system, which comprises thermodynamics, fluid dynamics, and structural analysis. The developed methodology mainly contains four steps: the design of the mini‐channel cooling system and computational fluid dynamics analysis, the design of experiments and selection of surrogate models, formulation of optimization model, and multi‐objective optimization for selection of the optimum scheme for mini‐channel cooling battery thermal management system. The findings in the study display that the temperature difference decreases from 8.0878 to 7.6267 K by 5.70%, the standard temperature deviation decreases from 2.1346 to 2.1172 K by 0.82%, and the pressure drop decreases from 302.14 to 167.60 Pa by 44.53%. The developed methodology could be extended for industrial battery pack design process to enhance cooling effect thermal performance and decrease power consumption.
Keywords:battery thermal management system  computational fluid dynamics  electric vehicles  multi‐objective design optimization  surrogate model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号