首页 | 本学科首页   官方微博 | 高级检索  
     


Wave‐current interaction effects on structural responses of floating offshore wind turbines
Authors:Lin Chen  Biswajit Basu
Abstract:This paper proposes a model considering the wave‐current interactions in dynamic analyses of floating offshore wind turbines (FOWTs) and investigates the interaction effects on the FOWT responses. Waves when traveling on current are affected by the current, leading to frequency shift and shape modification. To include such interactions in FOWT analysis, which has not been considered by the researchers till date, a nonlinear hydrodynamic model for multicable mooring systems is presented that is able to consider the cable geometric nonlinearity, seabed contact, and the current effect. The mooring model is then coupled with a spar‐type FOWT model that handles the structural dynamics of turbine blades and tower, aerodynamics of the wind‐blade interaction, and wave‐current effects on the spar. The analytical wave‐current interaction model based on Airy theory considering the current effect is used in the computation of flow velocity and acceleration. Numerical studies are then carried out based on the NREL offshore 5‐MW baseline wind turbine supported on top of the OC3‐Hywind spar buoy. Two cases, (1) when the currents are favorable and (2) when the currents are adverse, are examined. Differences of up to 15% have been observed by comparing the cable fairlead tension obtained excluding and including the wave‐current interactions. In particular, when irregular waves interact with adverse current, a simple superposition treatment of the wave and the current effects seems to underestimate the spar motion and the cable fairlead tension. This indicates that the wave‐current interaction is an important aspect and is needed to be considered in FOWT analysis.
Keywords:coupled analysis  floating offshore wind turbines  nonlinear mooring dynamics  wave‐current interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号