首页 | 本学科首页   官方微博 | 高级检索  
     


Isotactic polypropylene metal oxide and silica nanocomposites by a two‐step process comprising in situ olefin polymerization and melt compounding
Authors:Sven K  selau,Saskia Scheel,Linnea Petersson,Chau‐Hon Ho,Gerrit A Luinstra
Affiliation:Sven Käselau,Saskia Scheel,Linnea Petersson,Chau‐Hon Ho,Gerrit A Luinstra
Abstract:Nanocomposites of isotactic polypropylene (iPP) with 0.5 wt% filler of MgO@Mg(OH)2 (35 nm) or silicon dioxide (20–60 nm) or barium titanate (50 nm) nanoparticles were obtained from melt compounding of filler masterbatches with commercial iPP. The masterbatches with 5 wt% nanofiller were prepared in an in situ polymerization procedure using a metallocene/methylaluminoxane (MAO) catalyst system that was supported on the respective oxides. The original agglomerates of the nanoparticles were broken up by treatment with dibutylmagnesium for MgO@Mg(OH)2, and with ultrasound in the presence of MAO for SiO2 and BaTiO3. The tacticity (98% mmmm) of the in situ formed PP was not influenced by the presence of the nanofillers. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy mapping show a fine dispersion of single particles and small clouds or clusters. The primary nanoparticles appear to be surrounded by polymer. The elongation at break was decreased to 50, 17 and 9% for MgO@Mg(OH)2), SiO2 and BaTiO3, respectively. After melt compounding with iPP, a homogeneous single‐particle distribution of the oxidic nanoparticles was found in the resulting composites with 0.5 wt% filler content. © 2019 Society of Chemical Industry
Keywords:nanocomposites  in situ polymerization  polypropylene (PP)  mechanical properties   thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号