首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying the mechanical properties of polymeric tubing and scaffold using atomic force microscopy and nanoindentation
Authors:Raasti Naseem  Liguo Zhao  Vadim V. Silberschmidt  Yang Liu  Senthil K. Eswaran  Syed Hossainy
Abstract:Measurement of mechanical parameters of polymeric scaffolds presents a significant challenge due to their intricate shape and small characteristics dimensions of their elements—around 100 μm. In this study, mechanical properties of polymeric tubing and scaffold, made of biodegradable poly(l ‐lactic) acid (PLLA), were characterized using atomic force microscopy (AFM) and nanoindentation, complemented with tensile testing. AFM was employed to assess the properties of the tube and scaffold locally, while nanoindentation produced results with a dependency on the depth of indentation. As a result, the AFM‐measured elastic modulus differs from the nanoindentation data due to a substantial difference in indentation depth between the two methods. With AFM, a modulus between 2 and 2.5 GPa was measured, while a wide range was obtained from nanoindentation on both the tube and scaffold, depending on the indentation scale. Changes in the elastic modulus with in‐vitro degradation and aging were observed over the 1‐year period. To complement the indentation measurements, tensile testing was used to study the structural behavior of the tube, demonstrating the yielding, hardening and fracture properties of the material. POLYM. ENG. SCI., 59:1084–1091, 2019. © 2019 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号