首页 | 本学科首页   官方微博 | 高级检索  
     


Electrospun zeolitic imidazolate framework‐derived nitrogen‐doped carbon nanofibers with high performance for lithium‐sulfur batteries
Authors:Shanshan Yao  Sikang Xue  Sihuang Peng  Maoxiang Jing  Xiangqian Shen  Tianbao Li  Zhuozi YiLiu
Abstract:Three‐dimensional (3D) nitrogen‐doped carbon nanofibers (N‐CNFs) which were originating from nitrogen‐containing zeolitic imidazolate framework‐8 (ZIF‐8) were obtained by a combined electrospinning/carbonization technique. The pores uniformly distributed in N‐CNFs result in the improvement of electrical conductivity, increasing of BET surface area (142.82 m2 g?1), and high porosity. The as‐synthesized 3D free‐standing N‐CNFs membrane was applied as the current collector and binder free containing Li2S6 catholyte for lithium‐sulfur batteries. As a novel composite cathode, the free‐standing N‐CNFs/Li2S6 membrane shows more stable electrochemical behavior than the CNFs/Li2S6 membrane, exhibiting a high first‐cycle discharge specific capacity of 1175 mAh g?1at 0.1 C and keeping discharge specific capacity of 702 mAh g?1 at higher rate. More importantly, as the sulfur mass in cathodes was increased at 7.11 mg, the N‐CNFs/Li2S6 membrane delivered 467 mAh g?1after 150 cycles at 0.2 C. The excellent electrochemical properties of N‐CNFs/Li2S6 membrane can be ascribed to synergistic effects of high porosity and nitrogen‐doping in N‐CNFs from carbonized ZIF‐8, illustrating collective effects of physisorption and chemisorption for lithium polysulfides in discharge‐charge processes.
Keywords:electrochemical performances  lithium polysulfides  lithium‐sulfur batteries  N‐CNF membrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号