首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-BP的水力机组振动预测研究
引用本文:郭建斌,钱程,朱香凯,雷家旺,冶金祥. 基于GA-BP的水力机组振动预测研究[J]. 水电能源科学, 2020, 38(10): 133-135
作者姓名:郭建斌  钱程  朱香凯  雷家旺  冶金祥
作者单位:河海大学能源与电气学院,江苏南京211100;广东粤电南水发电有限责任公司,广东韶关512700
基金项目:粤电集团管理创新项目(201604)
摘    要:振动是影响水力机组安全稳定运行的重要影响因素,为此基于GA-BP算法建立了机组振动预测模型,统筹水力机组运行过程中受机械、水力和电磁等因素的关联性影响,结合广东省某水电站~#1机组状态监测数据进行分析验证。结果表明,与传统BP算法相比,在对~#1机组主轴、上机架振动预测中,GA-BP算法训练迭代步数分别从26步减少至6步和63步减少至26步,预测平均相对误差分别从10.18%减小至4.62%和11.42%减小至4.92%,模型的预测性能获得显著提高,为保障机组安全运行提供了重要的技术支撑。

关 键 词:水力机组  GA-BP算法  振动趋势  安全运行

Research on Vibration Prediction of Hydraulic Unit Based on GA-BP
Abstract:Vibration is an important factor affecting the safe and stable operation of hydraulic units. Based on the GA-BP algorithm, this paper establishes the vibration prediction model of the unit. Taking into account the influence of mechanical, hydraulic and electromagnetic factors during the operation of the unit, #1 unit state of a hydropower station in Guangdong Province is analyzes using the monitoring data. Compared with the traditional BP algorithm, the results show that the GA-BP algorithm is used to predict the vibration of the main shaft and upper frame of #1 unit, and the training iteration is reduced from 26 steps to 6 steps, and from 63 steps to 26 steps, respectively; Meanwhile, the average relative error of prediction is reduced from 10.18% to 4.62%, and from 11.42% to 4.92%, respectively. The prediction performance of the model is significantly improved, which can provide important technical support for the safe operation of the unit.
Keywords:hydraulic unit   GA-BP algorithm   vibration trend   safe operation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《水电能源科学》浏览原始摘要信息
点击此处可从《水电能源科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号