首页 | 本学科首页   官方微博 | 高级检索  
     


Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. Reversal by IFN-gamma
Authors:CS Tripp  MK Gately  J Hakimi  P Ling  ER Unanue
Affiliation:Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.
Abstract:Interleukin-12 (IL-12) is necessary for the production of IFN-gamma by NK cells during the generation of innate immunity and by T cells for the development of the Th1 response during specific cell-mediated immunity. Here we demonstrate that the endogenous production of IL-12 is critical to the survival of both immunocompromised SCID mice and normal C.B-17 control mice during a primary infection with Listeria monocytogenes. When IL-12 is neutralized in vivo, both strains of mice die at a normally sublethal dose of Listeria. Anti-IL-12 antibody-treated mice showed a decrease in macrophage I-Ad expression and an increase Listeria burden in the spleen. Furthermore, as has been demonstrated in vitro, these effects of IL-12 in vivo were predominantly regulated through the production of IFN-gamma. Administration of IFN-gamma simultaneously with neutralizing antibodies to IL-12 restored macrophage I-Ad expression, limited the spread of the infection, and resulted in the survival of SCID mice. Thus, IL-12 is critical for resistance to infection with Listeria monocytogenes, and this resistance is mediated through stimulation by IL-12 of IFN-gamma production. Concomitant experiments confirmed that anti-TNF antibodies also resulted in uncontrolled infection and a decrease in macrophage I-Ad expression. However, administration of IFN-gamma restored the levels of I-Ad in macrophages but did not limit Listeria growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号