首页 | 本学科首页   官方微博 | 高级检索  
     

甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化
引用本文:张军,胡升,顾菁,袁浩然,陈勇.甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J].化工学报,1951,73(7):2996-3006.
作者姓名:张军  胡升  顾菁  袁浩然  陈勇
作者单位:1.中国科学院广州能源研究所,广东 广州 510640;2.中国科学院可再生能源重点实验室,广东 广州 510640;3.广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640;4.中国科学技术大学工程科学学院,安徽 合肥 230026
基金项目:国家自然科学基金面上项目(51976222);能源清洁利用国家重点实验室开放基金课题项目(ZJU-CEU2020023)
摘    要:以电镀行业废弃物电镀污泥为前体合成磁性多金属催化材料,考察其在甲醇供氢体系生物基糠醛加氢转化制备糠醇和2-甲基呋喃的催化性能。通过X射线衍射(XRD)、液氮吸脱附、NH3程序升温脱附(NH3-TPD)、扫描电镜(SEM)等手段对煅烧后电镀污泥进行表征,并研究了煅烧温度和各反应工艺条件对甲醇供氢体系糠醛转化的影响。结果表明,电镀污泥衍生磁性多金属材料均具有强酸性位点和部分介孔结构,以铜组分为主的催化活性中心在反应过程中部分被还原为零价,有助于促进甲醇重整产氢和糠醛加氢转化;以700℃煅烧的电镀污泥为催化剂,在240℃反应2 h以上,糠醛几乎完全转化,产物中糠醇和2-甲基呋喃最高收率(摩尔分数)分别为70.9%和31.9%,反应过程副产物以2-呋喃甲基甲醚和2-(二甲氧基甲基)呋喃为主。此外,基于甲醇重整产氢、铜镍组分原位还原以及糠醛加氢反应之间的耦合作用,推测出甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化可能的反应机制。

关 键 词:电镀污泥  甲醇  生物质  糠醛  加氢  生物燃料  
收稿时间:2022-03-17

Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol
Jun ZHANG,Sheng HU,Jing GU,Haoran YUAN,Yong CHEN.Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol[J].Journal of Chemical Industry and Engineering(China),1951,73(7):2996-3006.
Authors:Jun ZHANG  Sheng HU  Jing GU  Haoran YUAN  Yong CHEN
Affiliation:1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, Guangdong, China;2.CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China;3.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China;4.School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui, China
Abstract:Magnetic multimetallic catalytic materials were synthesized by using electroplating sludge from electroplating industry as precursors, which were applied for the transfer hydrogenation of bio-based furfural using methanol as hydrogen donor. The calcined electroplating sludge was characterized by X-ray diffraction (XRD), liquid nitrogen adsorption and desorption, NH3 temperature-programmed desorption (NH3-TPD) and scanning electron microscopy (SEM). The effects of calcination temperature and reaction conditions on furfural conversion using methanol as hydrogen source were conducted. The results showed that the magnetic polymetallic materials had strong acid sites and partial mesoporous structure. Moreover, the copper component could be partially activated into Cu0 during the reaction, which benefited the hydrogen production from methanol reforming and followed furfural hydrogenation. Using electroplating sludge calcined at 700℃ as catalyst, furfural was almost completely transformed at 240℃ when prolonging reaction time over 2 h, in which the yields of furfuryl alcohol and 2-methylfuran reached up to 70.9% and 31.9% respectively. Noticeably, 2-furylmethyl methyl ether and 2-(dimethoxymethyl) furan were detected as the main by-products during the reaction. In addition, on the basis of the coupling effect among methanol reforming into H2, in-situ reduction of copper/nickel components and furfural hydrogenation, the plausible reaction mechanism for furfural hydrogenation over magnetic polymetallic materials derived from electroplating sludge using methanol as hydrogen source and solvent was proposed.
Keywords:electroplating sludge  methanol  biomass  furfural  hydrogenation  biofuel  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号