首页 | 本学科首页   官方微博 | 高级检索  
     

基于二维梯度树状肋相变储热系统强化传热机理
引用本文:张欣宇,杨晓宏,张燕楠,徐佳锟,郭枭,田瑞. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 1951, 73(10): 4399-4409. DOI: 10.11949/0438-1157.20220669
作者姓名:张欣宇  杨晓宏  张燕楠  徐佳锟  郭枭  田瑞
作者单位:1.内蒙古工业大学能源与动力工程学院,内蒙古 呼和浩特 010051;2.风能太阳能利用技术教育部重点实验室,内蒙古 呼和浩特 010051;3.内蒙古可再生能源重点实验室,内蒙古 呼和浩特 010051
基金项目:内蒙古自治区研究生科研创新项目(BZ2020030);国家自然科学基金项目(51866011);内蒙古自治区直属高校基本科研业务费项目(JY20220040)
摘    要:设计了双碟式光热-光电储热发电系统,针对相变储热系统传热特性进行研究,建立了六纵肋、雪花型肋、梯度树状肋相变储热模型,采用Fluent软件对石蜡蓄释热过程进行模拟。通过非稳态传热温度场和速度场的变化分析石蜡熔化和凝固的传热机理。结果表明,石蜡熔化过程伴随着热传导与自然对流的协同作用,凝固过程对流换热微弱以热传导为主。从场协同的角度分析,采用梯度树状肋使空间温度分布更均匀,可提高流体速度场和温度场的协同程度。石蜡熔化温度分别为315、340、360 K,完全熔化时间依次为224、374、703 s;完全凝固时间依次为3439、1089、842 s。可见,随着熔化温度的升高,完全熔化时间增长,完全凝固时间缩短。因此,在选择相变材料时要综合考虑熔化温度、蓄释热初温和终温及储热量的要求。

关 键 词:太阳能  相变储热  梯度肋  蓄释热  传热  场协同  数值模拟  
收稿时间:2022-05-10

Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins
Xinyu ZHANG,Xiaohong YANG,Yannan ZHANG,Jiakun XU,Xiao GUO,Rui TIAN. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins[J]. Journal of Chemical Industry and Engineering(China), 1951, 73(10): 4399-4409. DOI: 10.11949/0438-1157.20220669
Authors:Xinyu ZHANG  Xiaohong YANG  Yannan ZHANG  Jiakun XU  Xiao GUO  Rui TIAN
Affiliation:1.School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China;2.Key Laboratory of Wind and Solar Energy Utilization Technology, Ministry of Education, Hohhot 010051, Inner Mongolia, China;3.Inner Mongolia Key Laboratory of Renewable Energy, Hohhot 010051, Inner Mongolia, China
Abstract:A double-dish photothermal-photoelectric heat storage and power generation system was designed. The heat transfer characteristics of phase change heat storage system were studied. Then the phase change heat storage models of six longitudinal fins, snowflake fins and gradient dendritic fins were established. The Fluent software was used to simulate the heat storage and release process of paraffin. Finally, the heat transfer mechanism of paraffin melting and solidification was analyzed through the change of unsteady heat transfer temperature field and velocity field. The results show that the paraffin melting process is accompanied by the synergistic effect of heat conduction and natural convection, and the convective heat transfer in the solidification process is weak and mainly based on heat conduction. From the perspective of field synergy, the gradient dendritic fins are used to make the spatial temperature distribution more uniform, which can improve the synergy degree of fluid velocity field and temperature field. The melting temperature of paraffin is 315, 340 and 360 K respectively, and the complete melting time is 224, 374 and 703 s respectively. Complete solidification time is 3439, 1089, 842 s. It can be seen that with the increase of melting temperature, the complete melting time increases and the complete solidification time shortens. Therefore, the melting temperature, initial and final temperature of heat storage and release and heat storage capacity should be considered when choosing phase change materials.
Keywords:solar energy  phase change heat storage  gradient fins  heat storage and release  heat transfer  field synergy  numerical simulation  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号